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The Neighborhood Algorithm (NA) is a popular di-
rect search inversion technique. For dispersion curve in-
version, physical conditions between parameters Vs and
Vp (linked by Poisson's ratio) may limit the parameter
space with complex boundaries. Other conditions may
come from prior information about the geological struc-
ture. Irregular limits are not natively handled by classi-
cal search algorithms. In this paper, we extend the NA
formulation to such parameter spaces. For problems af-
fected by non-uniqueness, the ideal solution is made of
the ensemble of all models that equally ts the data and
prior information. Hence, a powerful exploration tool is
required. Exploiting the properties of the Voronoi cells,
we show that a dynamic scaling of the parameters during
the convergence to the solutions drastically improves the
exploration.

1. Introduction

Inversion techniques are widespread in geophysics as
attested by the number of scienti ¢ activities dealing with
their development and their application, mostly since
the beginning of the computer era. Inversion tools in-
clude linearized methods (Nolet [1981]; Tarantola [1987])
and direct search techniques (Sen and Sto a [1991]; Lo-
max and Snieder [1994]) that gained success during the
nineties parallel to the development of the power of desk
computers. For inversion problems with a reduced num-
ber of unknowns, direct search methods are probably best
suited because of their ability to correctly map the un-
certainties of the problem in the case of non-uniqueness
(distinct equivalent solutions).

The Neighborhood Algorithm (NA, Sambridge [1999])
is a stochastic direct search method that belongs to the
same familly as Genetic Algorithms (GA, Lomax and
Snieder [1994]) or Simulated Annealing (SA, Sen and
Sto a [1991]). Compared to a basic Monte Carlo sam-
pling, these approaches try to guide the random genera-
tion of samples by the results obtained so far on previ-
ous samples. The areas of the parameter space where
no interesting solution can be found are less sampled
than promising areas. All methods require several tuning
parameters to control the balance between exploitation
and exploration, i.e. between a quick convergence to a
minimum of the mis t function and slow investigation of
nearly all local minima to nd the global one or identify
equivalent minima.

NA makes use of Voronoi cells to model the mist
function across the parameter space. The mist func-
tion is supposed to be known for nsp samples randomly
distributed or not over the parameter space. A Voronoi
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cell centered around one of these samples is the nearest
neighbor region de ned under a suitable distance norm
(usually Euclidean). The union of all cells with a low mis-

t is the area of interest where new samples with small
mists are expected. The size of this ensemble is de-
ned by the tuning parameter n; (number of best cells
to consider). Sambridge [1999] proposed a simple but
very e cient way to generate new random samples in-
side a Voronoi cell based on a Gibbs sampler.ns (second
tuning parameter) new samples are generated and added
to the original population ( ns=n, samples per cell are
added). The geometry of the initial Voronoi cells are
modi ed to include these new ns samples. The process
is repeated it max (last tuning parameter) times until an
acceptable sampling of the solution is obtained.

We take the classical inversion of shear wave velocity

pro les from surface wave dipersion curves as an exam-
ple. We rst show that a good parameterization requires
a parameter space with irregular conditions whereas the
original NA is limited to an hyper-box. A suitable mod-
i cation of the NA kernel is proposed. Secondly, we im-
prove the exploration capabilities of NA by playing on
parameter scales. It is particulary usefull for inversion
problems a ected by non-uniqueness.

2. Searching inside irregular boundaries

In tabular ground structures (made of homogeneous
and horizontal layers), typically used for the computation
of dispersion curves, four parameters can fully describe an
elastic layer: Vs, H (thickness), Vp, and (density). They
are given by decreasing in uence, especially the density
can be considered as constant. Vs and V, are directly
related through the Poisson's Ratio( ) which generally
ranges from 0.2 to 0.5 in the nature. Historically, the
e ect of V, over the dispersion curve has been considered
as negligible. Nevertheless, Wathelet [2005] showed that
this is not true for all Poisson's ratio values, particularl y
for those encountered for hard rocks (below 0.3).

2.1. Parameters of a layer:  Vp, Vs, or ?

The usual approach, designed for linearized methods,
divides the tabular structure into homogeneous layers
with xed thicknesses. Inside each layer, two options are
generally available (Herrmann [1994]): xing Vp or . Vs
is left as the unique free parameter in all cases. V, pro-
les measured by refraction experiments have their own
uncertainties as recently recalled by Ivanov et al. [2006],
and xing de nitively V, to some arbitrary value may
arti cially reduce the range of possible solutions. Thus
Wathelet et al. [2004] introduced another parameteriza-
tion with two free parameters per layer: V, and the ratio
Vs=Vp, that has the advantage to keep all parameters to
physically acceptable ranges. However,Vs is the most im-
portant parameter for surface wave problems. Not having
a direct control over this parameter during the inversion
is penalizing in most situations. Furthermore, in the con-
text of stochastic inversion schemes, Vs is obtained by
a non-linear combination of two random variables with
uniform distributions ( V, and Vs=V;,). Hence, the prior
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distribution of Vs is not uniform. Though uniform distri-
butions cannot be considered as the total absence of prior
information about a parameter value (Edwards [1992]), it
is certainly closer to our prior knowledge than any uncon-
trolled and non uniform distribution (i.e. that supports
some particular values rather than others) introduced by
this non-linear combination used for computing Vs. The
optimum parameterization would be Vs and V, as free
parameters compatible with Poisson's ratio conditions.

2.2. Freeing thicknesses

With the increasing success of stochastic inversion
methods, velocities and thicknesses are both set as free
parameters (e.g. Wathelet et al. [2004], Picozzi et al.
[2005]), which greatly helps reducing the number of de-
grees of freedom (Scherbaum et al. [2003]). Nevertheless,
in a stack of N layers, the depth of the half-space top is
thus the sum of N random variables with a uniform dis-
tribution and a nite variance. Using the Central Limit
Theorem, the prior distribution of the bottom of the N th
layer tends towards a Gaussian. Hence, considering a
large number of layers leads to generate models stick-
ing around a median depth and not exploring any other
depths for the deeper layers. For instance, with four lay-
ers above a half-space, the top of the half-space has only
5% chance to lie out of 4 standard deviations (from 85
to 315 m if the total possible range is from 0 to 400 m, a
reduction of 42.5%). A possible solution would be to set
up depth rather than thickness parameters. To generate
valid ground models, the depth parameters must have
greater values for deeper layers than for shallow ones,
requiring some additional conditions.

2.3. Low velocity zones (LVZ)

Surface wave methods, especially for active source ex-
periments, are usually appreciated because they can in-
vestigate soft layers covered by sti er ones (e.g. Ryden
and Park [2004]). LVZs may induce problems in the for-
ward computation of the dispersion curve at high fre-
quency (relative to the model structure): crossing modes
can be encountered. Quick and straightforward algo-
rithms are usually not suitable. Hence, during the ran-
dom generation of models, the dispersion curve may be
impossible to compute for some particular Vs pro les
with LVZs. It de nes an irregular limit to the param-
eter space that we can only estimate by trial and error.
Lack of precision de ning this complex boundary may
eventually shadow parts of the parameter space contain-
ing low mis t solutions. Another aspect of LVZs is that
they can potentially increase the number of possible so-
lutions and the non-uniqueness of the problem. If our
prior knowledge about the geological structure does not
justify the presence of any LVZ, it would be interesting
to generate random Vs pro les without LVZ, requiring a
simple condition at each interface.

2.4. Implementation

In the above discussion, reviewing three aspects of
the parameterization of tabular ground structures clearly
shows the need for an inversion algorithm con ned in a
parameter space with complex boundaries. We assume
the parameter space bounded by an hyper-box (classical
limits) and by irregular limits, due to physical conditions
numerical limitations or prior information (Fig. 1). The
mis t computation is possible only inside the intersec-
tion of these two ensembles. By contrast with the hyper-
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box, the irregular limits may have no explicit de nition
(e.g. failure of the dispersion curve computation in case
of strong LVZs).

At the beginning of each iteration, the original NA
generates ns new models inside n, cells. The corre-
sponding mists are computed in a second step by a
user-provided function returning a oating-point value
(implementation of the forward problem). To correctly
handle failures of the mist computation, we propose a
function which returns an additional boolean value (true
if it is a valid model). The generation of models by the
Gibbs sampler must be integrated with the computation
of mists. n¢ = ns=n, new samples are produced for each
cell of the active region (union of all best n; cells). If n¢
is not an integer, it is rounded down and the remaining
models are randomly distributed on the active cells. For
each cell (repeatedn. times), the Gibbs sampler is used
to generate a model and its mist is directly computed.
In case of success, the model is accepted the same way
as in the original algorithm. If not, the returned mist
is ignored (it can be 0) and another model is randomly
generated inside the cell until success. The original rigid
concept of iterations has also been modied in a recent
parallelization of the NA core (Rickwood and Sambridge
[2006]). Our conditional solution could be also developed
for the parallel algorithm.

When the active region is close to one of the complex
boundaries, Voronoi cells where new samples are gener-
ated can be cut by one of them and only a small percent-
age of their multi-dimensional volume may be included
inside the valid region (e.g. cell | in Fig. 1). Thus,
there might be only very little chance to generate one
good sample even after a lot of trials. A way of solving
this problem is to count all accepted and rejected models
per cell. If the proportion of rejected models exceed a
threshold (e.g. 90%), the cell is thrown away from the
active region and replaced by the cell with the best mis t
currently outside the active region.

When there are a lot of conditions to satisfy, this ran-
dom generator is not very e cient. A lot of invalid mod-
els must be rejected before accepting just one. If an ex-
plicit de nition of the conditions is available, the Gibbs
sampler can be modi ed to always return a valid model.
For each parameter we de ne a list of conditions. A con-
dition is a C++ object (a data structure with dedicated
functions) that links several parameters together (it can
be as simple aspl < p2). It has a mandatory function
that returns the admissible range for each of its parame-
ters, keeping all others constant. We assume that at least
one model has successfully passed all conditions (model
Ain Fig. 1). According to the original NA, to stay within
cell k, parameter i can take any value from x; to x;. To
fulll the complex conditions x; is replaced by Xp. Xp
is computed exactly by the intersection of all admissible
ranges given by all conditions available for parameter i
keeping all other parameters constant. Hence, model A
can be perturbed along axisi and the obtained model B
is also satisfying all conditions. It is correct even if the
admissible region is not convex. The process is repeated
for all axes as in the original algorithm.

Contrary to the original NA, even the initial popu-
lation of samples (nso) is generated by a Markov-Chain
random walk based on a rst valid model. The latter
is obtained after a few iterations with an approximate
de nition of the complex boundary (because the current
model is still outside the valid region).

Thanks to this generic de nition of conditions, we were
able to introduce a new exible parameterization that de-
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couples all pro les of a tabular ground structure: V, and
Vs are de ned separately with any kind of velocity vari-

ation inside the layers (uniform, linear, or power law).

Prior information on V, prole from refraction experi-

ments can be introduced without constraining the layer-

ing for Vs pro le. Poisson's ratio can be kept to reason-
able values and LVZs are under control.

3. Exploration capabilities of parameter
scales

Sambridge [1999] showed that one of the striking fea-
tures of the Neighborhood algorithm is its ability to adapt
the sampling density and the center of sampling when
better data- tting models are discovered. The NA can
jump out of local minima thanks to the randomness of
the process and it can quickly evolve to a better solu-
tion. These properties are only meaningful for di cult
inversion problems where the mis t function has multiple
minima (e.g. the dispersion curve inversion).

The fast escape comes directly from the geometrical
properties of the Voronoi cells as illustrated in Fig. 2a.
For instance, we assume that at the end of n iterations
the best sample isA, the dark gray cell de nes the region
of best interest (n, = 1). If point B (white dot) is a new
sample drawn randomly inside the dark gray cell, the
\Voronoi geometry at iteration n + 1, associated with the
total population (rst 10 samples and the new one), is
the one shown with the dotted lines in Fig. 2a. If the
mist in point B is better than the mist in point A,
the region of interest clearly extends beyond its previous
limits.

Based on distances between sample points, the Voronoi
geometry is not invariant to axis scaling factors. In
Fig. 2b, the sample points are plotted with a dier-
ent scale for the horizontal axis (factor 10 compared to
Fig. 2a). The cell limits calculated for this second con-
guration are mostly aligned parallel to X axis. In such a
scaled space, an equivalent process to the one presented
for Fig. 2a would generate point B °whose associated cell
has a totally di erent shape than the one related to point
B. Cell B covers 31% of the total Y range whereas cell
B covers only 8%. On the contrary, for X axis, cell B
covers only 22% whereas celB ° covers 100%. Hence, cell
B° can potentially explore all values of parameter X and
has a strongly limited search interval for parameter Y.
By contrast, cell B explores all parameters with approx-
imatively the same weight.

The inuence of scaling factors may also be esti-
mated from the number of inter-connections between
cells, which supports the exploration behavior of the NA.
If we consider two neighbor samples (light and dark gray
cells) in Fig. 2a, we observe that they are not neighbors
in the same parameter space stretched along Y axis. In
the second case, the region of interest cannot move to-
wards lower Y values, blocked by previously generated
samples with a higher mis t.

If the parameter space contains parameters with
strongly dierent sensibilities (e.g. Vs at dierent
depths), the shape of the active region (union of all best
n, cells) may evolve during the inversion. Its size along
well resolved axes is shortened and remains almost con-
stant for poorly resolved parameters. From the results of
Fig. 2, as the number of iterations increases, this elon-
gation leads to a better exploration of the already well
resolved parameters. To the contrary, an e cient inver-
sion process must be more exploratory for less resolved
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parameters. In the original NA, the parameters are even-
tually scaled to [0;1] at the beginning of the inversion
(called herein 'static scaling’). By contrast, we propose
a 'dynamic scaling' to maintain the exploration as con-
stant as possible during the inversion. At the end of each
NA iteration, the hyper-box surrounding the active re-
gion is computed. Each parameter is scaled by the size
of the hyper-box along the corresponding axis. Scaling
factors are tracked from the beginning to map scaled to
real values and vice-versa.

Fig. 3a to f compare the sampling achieved with static
and dynamic scaling for the inversion of a realistic high
frequency dispersion curve. The rst 15 m of the ground
structure are well recovered in all cases. In Fig. 3a to
¢, the inversion is clearly trapped in local minima and
the minimum achieved mis t is much higher (0.2) than
for the dynamic scaling (Fig. 3d to e, 0.01). In Fig. 3d
to f, a loosely constrained parameter such asVs in the
deeper layers is much better investigated. Through the
three distinct random seeds tested in Fig. 3, the dy-
namic scaling results look quite robust: every inversion
run gives almost the same picture compared to the static
case. The maximum penetration depth of the method
can be estimated with much more objectivity with a bet-
ter exploration power. This example demonstrates one of
the direct bene ts of this improvement for surface wave
practitioners.

4. Conclusion

We improved one of the popular direct search inver-
sion techniques (Neighborhood Algorithm) originaly well
suited for investigating parameter spaces with simple
rectangular limits. For practical inversion cases in geo-
physics, prior information about the geological settings
or the geophysical parameters are to be included in the
inversion to reduce the non-uniqueness of the problem.
Futhermore, physical conditions may exist between pa-
rameters such as Poisson's ratio linking Vp to Vs. To
solve these questions, we developed a new algorithm ca-
pable of generating random samples inside a parameter
space with irregular boundaries. In addition, we dras-
ticaly improved the exploration behavior of the original
algorithm through a dynamic scaling of parameter values.
An e cient search of the parameter space ensures a con-
vergence towards the global solution especially if sensibl-
ity is not equally distributed among parameters. Better
uncertainty estimations are also naturally expected.

Parameter conditions were mostly developed for the
inversion of the dispersion curves of surface waves for 1D
structures. It o ers an easy way to introduce prior in-
formation in a fully controlled manner which may partly
solve non-uniqueness. The range of applications is cer-
tainly not limited to the dispersion curve inversion. The
non-uniqueness being present in a lot of other geophysi-
cal problems, we expect that this method might be of in-
terest. The conditional technique developped here could
also be adapted into Genetic Algorithms and Simulated
Annealing codes.
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Figure 1. A uniform random walk restricted to a

Voronoi cell and by complex boundaries (modi ed after

Sambridge [1999], Fig. 3). Starting from a sample inside
the cell (A), a Markov-Chain random walk is achieved

by introducing random perturbations along all axes suc-

cessively. Each random perturbation (for instance along
axis i) is bounded by the rectangular boundary (I; and
ui), by the limits of the Voronoi cells ( x; and x;) and by
the intersection of axis i passing by A with the complex
boundary (xp). Asymptotically the samples produced by

these walks are uniformly distributed inside the cell re-

gardless of its shape (Sambridge [1999]). The light grayed
area is the region outside the parameter space still inside
the rectangular boundary.
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Figure 2. E ects of the axis scaling on cell connectivity
for a 2D Voronoi geometry. In Fig. a, the two axes have
the same scale (from -0.5 to 0.5). The light gray and
the dark gray cells are neighbors. In Fig. b, X axis is
scaled by a factor 10 (from -0.05 to 0.05). The two cells
are not neighbors any longer. The dotted lines depict the
modi ed Voronoi geometry after the addition of a point
B (or BY at the limit of the cell centered around point
A.
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Figure 3. E ects of the parameter scaling on the search
capabilities. The same high frequency dispersion curve
(from 10 to 40 Hz) is inverted with the same parameter-
ization (4 layers, 11 variable parameters). In all cases,
10050 samples are generated by a NA sampler (200 it-
erations with ns and n, set to 50). All Vs pro les with
a mist less than 1 are systematically shown. In Fig. a
to ¢, the parameter space is scaled only at the begin-
ning of the inversion process (static scaling, see text). In
Fig. d to f, it is continuously scaled after each iteration
(dynamic scaling, see text). Inside each group, three dis-
tinct seeds are randomly chosen to check the robustness
of the results. The black curve is the true Vs pro le.



